

ACID SULPHATE SOIL ASSESSMENT (ASSA)

Property Address

106 Wyee Road & 1496 Hue Hue Road, Wyee NSW

Prepared for

High Line Projects Pty Ltd

Date

January 2024

- PO Box 4405 ,East Gosford, NSW 2250 | ABN: 86 635577641 | www.FoundationES.com.au 1 🗗

DOCUMENT CONTROL REGISTER

Document Information							
Job Number	E3124-2						
Document Number	0						
Report Title	Acid Sulphate Soil Assessment (ASSA)						
Site Address	106 Wyee Road & 1496 Hue Hue Road, Wyee NSW						
Prepared for	High Line Projects Pty Ltd						

Document Review							
Revision NumberDate IssuedDescriptionIssued By							
Rev 1	30/01/2024	Initial Issue	Ben Buckley				

Distribution Register								
Distribution Method Custodian Issued to								
Electronic	B. Buckley	Foundation Earth Sciences Office						
Electronic	S. Zmisa	High Line Projects Pty Ltd						

Authorisation and Release							
	Signature	Signature Name					
Reviewed	WSp.	Michael Silk B. Env Sc (CEnvP General)	30/01/2024				
Authorised	bee buckley	Benjamin Buckley Principal Environmental Forensic Scientist / Director	30/01/2024				

TABLE OF CONTENTS

1.0	INTRODUCTION	6
2.0	OBJECTIVES	6
3.0	SCOPE OF WORKS	7
4.0	ASSESSMENT CRITERIA	7
5.0	SITE INFORMATION	0
5.3	1 SITE IDENTIFICATION	0
5.2	2 TOPOGRAPHY	0
5.3	3 LOCAL GEOLOGY & SURFACE WATERS1	0
5.4	4 PROPOSED DEVELOPMENT	1
5.5	5 PREVIOUS REPORTS	1
6.0	SOIL BORING AND SAMPLING1	2
6.2	1 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)1	2
7.0	FIELD RESULTS	3
7.3	1 SOIL OBSERVATIONS	3
7.2	2 FIELD PH RESULTS	4
8.0	SUSPENDED PEROXIDE OXIDATION COMBINED ACIDITY & SULPHATE (SPOCAS) RESULTS 1	6
9.0	CHROMIUM REDUCIBLE SULPHUR RESULTS1	8
10.0	DISCUSSION & RECOMMENDATION1	9

TABLE OF FIGURES

Table 1: Site Identification Review	.10
Table 2: Summary of field analysis results	.14
Table 3: Laboratory Results - SPOCAS	.17
Table 4: Laboratory Results – Chromium Reducible Sulphur	.18

LIST OF FIGURES & APPENDICES

Figure 1	Site Locality
Figure 2	Site Borehole Location Plan
Appendix A	Borehole Logs
Appendix B	NATA Accredited Laboratory Certificate

ABBREVIATIONS

AASS	Actual Acid Sulphate Soils
AHD	Above Height Datum
ANC	Acid Neutralising Capacity
ASS	Acid Sulphate Soils
ASSMAC	Acid Sulphate Soils Management Advisory Committee
ASSMP	Acid Sulphate Soils Management Plan
BGL	Below Ground Level
DNR&M	Department of Natural resources and Mines
DO	Dissolved Oxygen
EC	Electric Conductivity
EIL	Ecological Investigation Level
EPA	Environmental Protection Authority
HIL	Health-based Investigation Level
LOR	Limit of reporting
NV	Neutralising Value
PASS	Potential Acid Sulphate Soils
POCAS	Peroxide Oxidation Combined Acidity and Sulphate
PSI	Preliminary Site Investigation
QA/QC	Quality Assurance/Quality Control
QASSIT	Queensland Acid Sulphate Soils Investigation Team
SPOCAS	Suspended Peroxide Oxidation Combined Acidity and Sulphate
SPOS	Peroxide Oxidisable
TAA	Total Actual Acidity
TCLP	Toxicity Characteristic Leaching Procedure
ТРА	Total Potential Acidity
TSA	Total Sulfidic Acidity
TSS	Total Suspended Solids
VENM	Virgin Excavated Natural Material

1.0 INTRODUCTION

Foundation Earth Sciences (FES) was appointed by High Line Projects Pty Ltd to prepare an Acid Sulphate Soil Assessment (ASSA) for the property located at 106 Wyee Road & 1496 Hue Hue Road, Wyee NSW ("the site"). The site is in located the City of Lake Macquarie area.

The site is currently occupied by two rural residential properties, with residential dwellings, storage sheds, unsealed driveways, dam, and large grassed areas. The proposal is to rezone the site into a commercial zoning (business zone) to enable the development of commercial uses. A supermarket will be a key component of the proposed development. The following uses are also being considered for the site; speciality retail, childcare, other potential commercial uses include medical centre, small office and bank etc.

An ASSA assessment is required as disturbances to Potential Acid Sulphate Soil (PASS) or Actual Acid Sulphate Soils, which may occur during construction and excavation works, can result in the formation of acid. The acid, once formed, could then damage infrastructure or harm ecological systems. The results of the field parameters from this assessment should only be used as a preliminary study to determine if further investigations are required. If results exceed the criteria, then further work, including an ASS Management Plan, may be required.

2.0 OBJECTIVES

The purpose of the ASS Assessment is to determine the presence or absence of ASS at the site. In the absence of ASS, it is essential to assess for the presence of Potential Acid Sulphate Soils (PASS). If the results do not meet criteria an Acid Sulphate Soil Management Plan will be required.

This assessment reviewed the presence of ASS / PASS in the portion of the site that may require excavation.

3.0 SCOPE OF WORKS

The scope of works of the PASSA included:

- Review of previous environmental assessments;
- Site walkover;
- Targeted soil boring, sampling and testing for ASS at the site;
- Interpretation of field test analysis and findings; and
- Reporting in accordance with relevant assessment guidelines / regulations.

4.0 ASSESSMENT CRITERIA

When assessing ASS at sites in NSW, the Acid Sulphate Soils Management Advisory Committee 'Acid Sulphate Soil Manual' apply. The following national guidelines issued in June 2018 are also applicable:

 Australian Government Department of Agriculture and Water Resources (2018), National Acid Sulfate Soils Guidance – National Acid Sulfate Soil Sampling and Identification Methods Manual, June 2018.

The purpose of this report is to determine whether there is a probable risk associated with ASS or PASS and to determine whether these types of soils exist on the site.

This report has been prepared in accordance with the Acid Sulphate Soil Manual (1998) & National Acid Sulfate Soil Sampling and identification methods manual (2018).

<u>Risk Map</u>

A review of NSW Department of Land & Water Conservation (DLWC) Acid Sulphate Soil Risk Maps (Edition Two, December 1997, Scale 1:250,000) was undertaken. The risk maps do not detail the severity of the ASS, but only provide an indication that they may be present. The decision to classify certain areas as ASS is based on several geomorphic conditions and site criteria. The following points are used to determine if ASS is likely to exist (extracted from ASSMAC (1998) Acid Sulphate Soils Assessment Guidelines):

- Sediments of recent geological age (Holocene) ~ 10 000 yr.
- Soil horizons less than 5m AHD (Australian Height Datum).
- Marine or estuarine sediments and tidal lakes.
- In coastal wetlands or back swamp areas; waterlogged or scalded areas; interdune swales or coastal sand dunes.
- In areas where the dominant vegetation is mangroves, reeds, rushes and other swamp tolerant and marine vegetation.
- In areas identified in geological descriptions or in maps bearing sulphide minerals, coal deposits or former marine shales/sediments.
- Deeper older estuarine sediments >10m below the ground surface, Holocene or Pleistocene age.

A review of the "Hunter" map indicated that the site is in an area of "high probability within 0.5m of the ground surface" of acid sulphate soils within the soil profile.

A review of the Lake Macquarie Local Environmental Plan 2014 indicated the site is in Class 5 area of acid sulphate soil material within the soil profile.

Assessment Criteria

The following soil indicators are used to determine if AASS is present on a site:

- field pH ≤4 in soils
- presence of shell
- any jarosite horizons or substantial iron oxide mottling in auger holes, in surface encrustations or in any material dredged or excavated and left exposed. Jarosite is not always found, however, in actual acid sulphate soils.

The following soil indicators are used to determine if PASS is present on a site:

- waterlogged soils, unripe muds (soft, buttery, blue grey or dark greenish grey) or estuarine silty sands or sands (mid to dark grey) or bottom sediments of estuaries or tidal lakes (dark grey to black)
- presence of shell
- soil pH usually neutral but may be acid -positive Peroxide Test (see section 7.2 Field pH results).

5.0 SITE INFORMATION

5.1 Site Identification

The site is identified as follows:

Site Identifier	Site Details				
Site Location	106 Wy	ee Road & 1496 Hue Hue Road, Wyee NSW			
Lot/DP	Lot 281	in DP 659927 – 106 Wyee Road			
	Lot 282	in DP 755242 – 1496 Hue Hue Road			
Site Coordinates #	S Corne	r: Latitude: -33.176699, Longitude: 151.479469			
Site Area	Approximately 1.42ha				
Local Government Area (LGA)	City of Lake Macquarie				
Zoning##	RU4 – Primary Production Small Lots				
Surrounding Land Uses	North Commercial/industrial and some rural residential				
	South Hue Hue Rd, Rural residential and vacant land				
	East Wyee Rd, commercial and fuel station then				
	residential				
	West	Rural residential			

Table 1: Site Identification Review

Notes: # Six Maps

refer to NSW Planning Portal

5.2 Topography

The topography viewed on NSW ESPADE indicated the following for the Doyalson Landscape.

5.3 Local Geology & Surface Waters

The 1:100,000 Geological map of Gosford – Lake Macquarie, published by NSW Government in 1998, indicates the soils within the site to be underlain by Triassic

Age Tuggerah Formation of the Narrabeen Group, comprising red, green and grey shale and quartz-lithic sandstone.

The nearest downgradient waterbody is Mannering Creek located approximately 200m south east of the site. There is also the Swampy creek located approximately 300m north of the site. There are many dams within & surrounding of the properties.

5.4 Proposed Development

The site currently is occupied by two rural residential properties, each with a residential dwelling, storage shed, unsealed driveway, dams, and large grassed areas. The proposal is to rezone the site to a commercial zoning (business zone) to enable the development of commercial uses. A supermarket will be a key component of the proposed development. The following uses are also being considered for the site; speciality retail, childcare, other potential commercial uses include medical centre, small office and bank etc.

5.5 Previous Reports

• No previous acid sulphate soil reports were available for this site.

6.0 SOIL BORING AND SAMPLING

A soil sampling and analysis program was used to consolidate the nature and degree of Acid Sulphate Soils present in the surface and subsurface geology. Samples were collected from six (6) test pits within the site. The borehole locations are presented in **Figure 2** – Site Features and Borehole Location Plan.

Field analysis was performed on the collected samples for pH_f and pH_{fox} in accordance with the required sampling techniques outlined in the Acid Sulfate Soil Manual (*ASSMAC 1998*). This included the Field pH and peroxide test protocol.

6.1 Quality Assurance/Quality Control (QA/QC)

Standard QA/QC procedures were followed.

Standard sampling and analysing procedures are in accordance with and set out in the Acid Sulphate Soil Manual (1998) and Australian Government Department of Agriculture and Water Resources (2018), National Acid Sulfate Soils Guidance – National acid sulfate soil sampling and identification methods manual, June 2018.

7.0 FIELD RESULTS

7.1 Soil Observations

Based on information from all boreholes, the surface and sub-surface profile across the site is generalised as follows:

- Topsoil or Fill: Silty Clay;
- Natural: Silty CLAY;

No unusual colouring or shells were detected in the soil. This suggests the presence of pyrite (iron sulphide) or jarosite was unlikely.

Refer to **Appendix A** – Borehole Logs.

7.2 Field pH Results

The results of the field pH tests are presented in the table below:

Comula	Doubh (m)	p	н	рН		Change in pH (pH _f	Effervescence
Sample	Depth (m)	H ₂ O	Soil pH _f	H ₂ O ₂	Soil pH _{fox}	– pH _{fox})	Reaction Rate
ASSA1-1	0.0-0.1	-	7.4	-	4.9	2.5	Medium
ASSA1-2	0.4-0.5	-	7.2	-	5.4	1.8	Medium
ASSA1-3	0.9-1.0	-	5.4	-	4.6	0.8	Low
ASSA1-4	1.4-1.5	-	5.3	-	4.1	1.2	Medium
ASSA1-5	1.9-2.0	-	5.1	-	4.1	1.0	Medium
ASSA1-6	2.4-2.5	-	5.1	-	3.9	1.2	Medium
ASSA1-7	2.9-3.0	-	5.1	-	4.0	1.1	Medium
ASSA2-1	0.0-0.1	-	6.5	-	3.6	2.9	High
ASSA2-2	0.4-0.5	-	6.4	-	3.9	2.5	Medium
ASSA2-3	0.9-1.0	-	5.9	-	4.4	1.5	Medium
ASSA2-4	1.4-1.5	-	5.5	-	4.1	1.4	Medium
ASSA2-5	1.9-2.0	-	5.4	-	4.2	1.2	Medium
ASSA2-6	2.4-2.5	-	5.2	-	3.6	1.6	Medium
ASSA2-7	2.9-3.0	-	5.3	-	3.3	2.0	High
ASSA3-1	0.0-0.1	-	7.8	-	5.4	2.4	Medium
ASSA3-2	0.4-0.5	-	6.9	-	2.8	4.1	Extreme
ASSA3-3	0.9-1.0	-	6.0	-	3.5	2.5	Medium
ASSA3-4	1.4-1.5	-	5.6	-	3.6	2.0	Medium
ASSA3-5	1.9-2.0	-	5.0	-	4.0	1.0	Medium
ASSA3-6	2.4-2.5	-	5.4	-	3.5	1.9	Medium
ASSA3-7	2.9-3.0	-	5.5	-	3.8	1.7	Medium
ASSA4-1	0.0-0.1	-	5.7	-	3.0	2.7	high
ASSA4-2	0.4-0.5	-	5.4	-	3.7	1.7	Medium
ASSA4-3	0.9-1.0	-	5.6	-	3.9	1.7	Medium
ASSA4-4	1.4-1.5	-	5.4	-	4.0	1.4	Medium

Table 2: Summary of field analysis results

ASSA4-5	1.9-2.0	-	5.3	-	3.9	1.4	Medium
ASSA4-6	2.4-2.5	-	5.4	-	3.7	1.7	Medium
ASSA4-7	2.9-3.0	-	5.3	-	3.6	1.7	Medium
ASSA5-1	0.0-0.1	-	4.7	-	3.0	1.7	high
ASSA5-2	0.4-0.5	-	5.2	-	3.6	1.6	Medium
ASSA5-3	0.9-1.0	-	5.1	-	3.7	1.4	Medium
ASSA5-4	1.4-1.5	-	5.1	-	3.4	1.7	Medium
ASSA5-5	1.9-2.0	-	5.0	-	3.6	1.4	Medium
ASSA5-6	2.4-2.5	-	5.0	-	4.6	0.4	Medium
ASSA5-7	2.9-3.0	-	5.2	-	4.3	0.9	Medium
ASSA6-1	0.0-0.1		4.8		2.6	2.2	Extreme
ASSA6-2	0.4-0.5		4.4		3.4	1.0	Medium
ASSA6-3	0.9-1.0		5.2		3.5	1.7	Medium
ASSA6-4	1.4-1.5		5.2		3.9	1.3	Medium
ASSA6-5	1.9-2.0		5.3		3.9	1.4	Medium
ASSA6-6	2.4-2.5		5.2		4.3	0.9	Medium
ASSA6-7	2.9-3.0		5.1		3.9	1.2	Medium
literative sector secto							

Notes:

- > pH_f refers to pH field (soil and distilled H₂O).
- > pH_{fox} refers to pH field oxidised (soil and peroxide).
- > Change in pH refers to pH field minus pH field oxidised.
- > **Highlighted** refers to detections.

8.0 SUSPENDED PEROXIDE OXIDATION COMBINED ACIDITY & SULPHATE (SPOCAS) RESULTS

Following the field tests undertaken by FES (administered Envirolab), four (4) soil samples from FES (collected from 12th October 2023) were submitted to the NATA certified laboratory of Envirolab for the SPOCAS test.

The soils were assessed against the guidelines set out in Acid Sulphate Soils Management Advisory Committee (ASSMAC) (2008) *Acid Sulphate Soils Assessment Guidelines*. The action criteria selected was based on excavation of more than 1,000 tonnes of soils disturbed within the site. The results are assessed against the available criteria, those being:

Coarse Texture Soils

- Sulphur Trail (S_{pos}) = 0.03%
- Acid Trail (TPA) = 18 mol H⁺/tonne

Medium Texture Soils

- Sulphur Trail (S_{pos}) = 0.03%
- Acid Trail (TPA) = 36 mol H⁺/tonne

The laboratory analysis results are presented in the following table:

Sample	Profile	Depth (m)	S-POS (%) (sulphur trail)	TAA (mol H⁺/ tonne)	TPA (mol H ⁺ / tonne) (acid trail)	TSA (mol H ⁺ /tonne) (acid trail)	Lime Calculation (kg CaCO ₃ /t includes 1.5 safety factor).
		S	ampling date	ed 12 th Octob	er 2023		
ASSA2-7	Natural-Silty CLAY	2.9-3.0	<0.005	54	57	<5	4.3
ASSA3-2	Fill-Silty Clay	0.5-0.6	0.02	7	44	37	1.2
ASSA5-4	Natural-Silty CLAY	1.5-1.6	<0.005	55	63	8	4.2
ASSA6-1	Topsoil-Silty Clay	0.0-0.1	0.04	55	130	71	6.2
ASSMAC Guidelines Fine Texture		-	0.03	-	18	18	-

Table 3: Laboratory Results - SPOCAS

Notes:

Guidelines follow the ASSMAC "Acid Sulphate Soils Assessment Guidelines 1998".

Fine Texture Criteria based upon clay content of > or equal to 40%

Medium Texture Criteria based upon clay content of 5-40%

> Criteria based upon less than 1000 tonnes disturbed

> Bold values exceed ASSMAC guidelines

When comparing the results summarised above in Table 3 to Table 4.4 (ASSMAC) for fine to medium texture soils, it can be determined that the percentage of oxidisable Sulphur (SPOS) did exceed the action criteria in BH6/ASSA6-1 (0.0-0.1m).

The Acid trail (TPA/TSA) results were below the action criteria with the exception of TPA in all tested borehole locations and for TSA in BH3/ASSA3-2 (0.5-0.6m) & BH6/ASSA6-1 (0.0-0.1m).

9.0 CHROMIUM REDUCIBLE SULPHUR RESULTS

Chromium Reducible sulphur method calculates the potential acidity from analysis of sulphide content. This method does not include sulphur from organics and sulphates (e.g. gypsum) and detects as low sulphide content and is therefore suitable to determine potential interferences caused by naturally occurring acidity within the soils. The laboratory results are presented in the following table:

Sample	Depth	Chromium Reducible Sulphur (%)						
Sampling dated 12 TH October 2023								
ASSA2-7	2.9-3.0	<0.005						
ASSA3-2	0.5-0.6	<0.005						
ASSA5-4	1.5-1.6	<0.005						
ASSA6-1	0.0-0.1	<0.005						
SPOS Action	n Criteria	0.03						

Table 4: Laboratory Results – Chromium Reducible Sulphur

The results from the Table 4 indicated the following:

• A lack of oxidisable sulphur compounds was detected within all the testpit locations.

10.0 DISCUSSION & RECOMMENDATION

The assessment of acid sulphate material can be quite complex and can have a lot of interferences associated with the test methods and soil matrix. The following points outline the evidence to support the site is <u>NOT</u> impacted to the maximum depth of sampling:

- Analysis using the field test showed the soil indicators to be absence for AASS;
- Analysis using the Chromium reducible suite indicated that no inorganic sulphur sources were present above the relevant action criteria.
- FES has concluded the existing acid trail may have been consistent with organic occurring materials within the soils.
- The site is located at an elevation of approximately 15-21m AHD according to Google Earth. Acid Sulphate Soils occur in soil horizons *less than 5m AHD*.

Therefore, it has been determined the site is <u>NOT</u> impacted by Acid Sulphate Soils within the borehole locations BH1/ASSA1 to BH6/ASSA6 to a maximum depth of analysis. Therefore, an Acid Sulphate Soil Management plan (ASSMP) is not required for the site as it is not impacted with AASS/PASS to the maximum depth of analysis.

REFERENCES

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) (2018).
- Australian Government Department of Agriculture and Water Resources (2018), National Acid Sulfate Soils Guidance – National Acid Sulfate Soil Sampling and Identification Methods Manual, June 2018.
- Stone Y, Ahern C.R and Blunden B (1998), 'Acid Sulphate Soil Manual 1998', Acid Sulphate Soils Management Advisory Committee, Wollongbar, NSW, Australia.

LIMITATIONS

Whilst to the best of our knowledge, information contained in this report is accurate at the date of issue, although subsurface conditions, including groundwater levels and contaminant concentrations, can change in a limited time. This should be borne in mind if the report is used after a protracted delay. There is always some disparity in subsurface conditions across a site that cannot be fully defined by investigation. Hence it is unlikely that measurements and values obtained from sampling and testing during environmental works carried out at a site will characterise the extremes of conditions that exist within the site.

There is no investigation that is thorough enough to preclude the presence of material that presently or in the future, may be considered hazardous at the site. Since regulatory criteria are constantly changing, concentrations of contaminants presently considered low may, in the future, fall under different regulatory standards that require remediation.

Opinions are judgements that are based on our understanding and interpretation of current regulatory standards and should not be construed as legal opinions. Although the information provided by an Acid Sulphate Soils Assessment and Management Plan can reduce exposure to risks, no assessment, however diligently carried out, can eliminate them. It must be noted that these findings are professional findings and have limitations. Even a rigorous professional assessment may fail to detect all ASS and/or PASS on a site. Sulphates may be present in areas that were not surveyed or sampled.

FIGURE 1: LOCALITY MAP

FIGURE 2: SITE FEATURES AND BOREHOLE LOCATION PLAN

APPENDIX A: BOREHOLE LOGS

BOREHOLE : BH1/ASSA1

PAGE 1 OF 1

CL	IENT		E: <u>High</u>	Line P	rojects	Pty Ltd			JOB N	UMBER: E	3124-2	
SIT	ΈA	DDRES	SS : <u>106</u>	Wyee	Road a	& 1496 Hue Hue Road, Wyee NSW			PROJE	CT: Acid S	Sulphate Soil Assesment	
Dat	te St	tarted	: 13/10/	/2023		Completed : <u>13/10/2023</u>	Logged By : _R	W			Checked By : MS	
Bo	reho	le Loc	ation : _	Refer	to Site	Plan	Surface RL :				Datum : _ m AHD	
Eq	uipn	nent :	5 Tonne	Excav	ator		Borehole Size :	2m	x 0.5m		Slope :90°	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
						TOPSOIL, Silty Clay, low plasticity, yellov vegetable matter	v/brown, with	Μ	S	0.0-0.1	ASSA1/1	- - - 0.5
			0.50		CH	Silty CLAY, medium to high plasticity, wh some rocks	ite/red/yellow, with	Μ	St-Vst	0.5-0.6	ASSA1/2 — Residual Soil	
	Icountered									1.0-1.1	ASSA1/3	
ш	Not en		-							1.5-1.6	ASSA1/4	-
			2 <u>.0</u> - -							2.0-2.1	ASSA1/5	2 <u>.0</u> - - -
			2 <u>.5</u> - - 2.80		СН	Silty CLAY, medium to high plasticity, wh	ite/red/yellow, with	M	St-Vst	2.5-2.6	ASSA1/6	2 <u>.5</u> – –
			3.00 3.00	-		ironstone bands Borehole BH1/ASSA1 terminated at 3.00	m			2.9-3.0	ASSA1/7	3 <u>.0</u> -
			3 <u>.5</u> - -									3 <u>.5</u> - -
			4.0									4.0
Comr	<u>nents:</u>							D - Dry M - Moist W - Wet	VS - S - St - VSt- H -	Very Soft VL Soft L Firm ML Stiff D Very Stiff VE Hard	- Very Loose - Loose - Medium Dense - Dense D - Very Dense	

FOUNDATION EARTH SCIENCES

FOUNDATION EARTH SCIENCES PAGE 1 OF 1 CLIENT NAME: High Line Projects Pty Ltd JOB NUMBER: E3124-2 SITE ADDRESS: 106 Wyee Road & 1496 Hue Hue Road, Wyee NSW PROJECT: Acid Sulphate Soil Assesment Date Started : 13/10/2023 Completed : 13/10/2023 Logged By : RW Checked By : MS Borehole Location : Refer to Site Plan Surface RL : _---Datum : ____ AHD Equipment : 5 Tonne Excavator Borehole Size : 2m x 0.5m Slope : _-90° Classification Symbol Consistence Ъ б £ Moisture Samples Material Description Additional Observations Depth Graphic Tests Method Water Remarks RL Depth (m) (m) TOPSOIL, Silty Clay, low plasticity, yellow/brown, with М S 0.0-0.1 ASSA2/1 vegetable matter and rocks 0.40 СН Silty CLAY, medium plasticity, white/orange Μ St Residual Soil 0.5 0<u>.5</u> ASSA2/2 0.5-0.6 1.0 ASSA2/3 1.0-1.1 encountered СН St-Vst 1.30 Silty CLAY, medium to high plasticity, white/red/yellow, with Μ Residual Soil some rocks 1.5 ш ASSA2/4 1.5-1.6 Not 2<u>.0</u> ASSA2/5 2.0-2.1 2<u>.5</u> ASSA2/6 2.5-2.6 СН Silty CLAY, medium to high plasticity, white/red/yellow, with Μ St-Vst **Residual Soil** 2.80 ironstone bands ASSA2/7 2.9-3.0 3<u>.0</u> 3.0 3.00 Borehole BH2/ASSA2 terminated at 3.00m 3.5 3.5 4.0 Com

<u>ments:</u>	D - Dry M - Moist W - Wet	VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

FOUNDATION EARTH SCIENCES JOB NUMBER: E3124-2 CLIENT NAME: High Line Projects Pty Ltd SITE ADDRESS: 106 Wyee Road & 1496 Hue Hue Road, Wyee NSW **PROJECT:** Acid Sulphate Soil Assesment Date Started : 13/10/2023 Completed : 13/10/2023 Logged By : RW Checked By : MS Borehole Location : Refer to Site Plan Surface RL : _---Datum : ____ AHD Equipment : 5 Tonne Excavator Borehole Size : 2m x 0.5m Slope : _-90° Classification Symbol Consistence Гog £ Moisture Samples Material Description Additional Observations Depth Graphic Tests Method Water Remarks RL Depth (m) (m) FILL, Silty Clay, low plasticity, light brown, with sand М S 0.0-0.1 ASSA3/1 0.20 FILL: Silty CLAY, low to medium plasticity, dark grey, with М S-F some rocks 0<u>.5</u> 0.5 ASSA3/2 0.5-0.6 0.70 СН Silty CLAY, high plasticity, orange/white М St-Vst Residual Soil 1.0 ASSA3/3 1.0-1.1 encountered 1.5 ш ASSA3/4 1.5-1.6 Not 2<u>.0</u> ASSA3/5 2.0-2.1 2.40 СН Silty CLAY, high plasticity, orange/white, with ironstone Μ St-Vst **Residual Soil** 2<u>.5</u> bands ASSA3/6 2.5-2.6 ASSA3/7 2.9-3.0 3<u>.0</u> 3.0 3.00 Borehole BH3/ASSA3 terminated at 3.00m Earth Sciences (Updated on 20/04/2020) 3.5 3.5 4.0 4.0 VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense D - Dry M - Moist W - Wet VS - Very Sof S - Soft F - Firm St - Stiff Comments: VSt - Very Stiff H - Hard

© Foundation

BOREHOLE : BH3/ASSA3

PAGE 1 OF 1

FOUNDATION EARTH SCIENCES PAGE 1 OF 1 CLIENT NAME: High Line Projects Pty Ltd JOB NUMBER: E3124-2 SITE ADDRESS: 106 Wyee Road & 1496 Hue Hue Road, Wyee NSW **PROJECT:** Acid Sulphate Soil Assesment Date Started : 13/10/2023 Completed : 13/10/2023 Logged By : RW Checked By : MS Borehole Location : Refer to Site Plan Surface RL : _---Datum : ____ AHD Equipment : 5 Tonne Excavator Borehole Size : 2m x 0.5m Slope : _-90° Classification Symbol Consistence Гog £ Moisture Samples Material Description Additional Observations Depth Graphic Tests Method Water Remarks RL Depth (m) (m) FILL, Silty Clay, low plasticity, light brown, with sand М S 0.0-0.1 ASSA4/1 FILL: Silty CLAY, low to medium plasticity, dark grey, with 0.30 Μ S-F some rocks 0<u>.5</u> 0<u>.5</u> ASSA4/2 0.5-0.6 0.70 СН Silty CLAY, high plasticity, orange/white Μ St-Vst Residual Soil 1.0 ASSA4/3 1.0-1.1 encountered 1.5 ш ASSA4/4 1.5-1.6 Not 2<u>.0</u> ASSA4/5 2.0-2.1 2.5 Silty CLAY, high plasticity, orange/white, with ironstone bands М St-Vst Residual Soil 2.50 СН 2.5-2.6 ASSA4/6 ASSA4/7 2.9-3.0 3<u>.0</u> 3.0 3.00 Borehole BH4/ASSA4 terminated at 3.00m Earth Sciences (Updated on 20/04/2020) 3.5 3.5 4.0 4.0 VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense D - Dry M - Moist W - Wet VS - Very Sof S - Soft F - Firm St - Stiff Comments: VSt - Very Stiff H - Hard

BOREHOLE : BH4/ASSA4

© Foundation

			FOUN EART SCIEI	NCE	tioi S	N				BORE	PAGE 1	OF 1
CL	IENT		E: <u>High</u>	Line P	rojects	Pty Ltd			JOB N	UMBER: _E	3124-2	
SIT	'E Al	DDRES	SS : <u>106</u>	Wyee	Road &	& 1496 Hue Hue Road, Wyee NSW			PROJE	CT: Acid	Sulphate Soil Assesment	
Da	te St	arted	: <u>13/10</u>	/2023		_ Completed : _13/10/2023	Logged By : _R	W			Checked By : MS	
Bo	reho	le Loc	ation : _	Refer	to Site	Plan	Surface RL :				Datum : <u>m AHD</u>	
Eq	uipm	nent :	5 Ionne	e Excav	ator		Borehole Size :	<u>2m x</u>	k 0.5m		Slope :90°	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
						TOPSOIL, Silty Clay, low plasticity, light h	prown, with sand	Μ	S	0.0-0.1	ASSA5/1	
			0.50 0.50		СН	Silty CLAY, medium to high plasticity, ora	inge/white	Μ	St-Vst	0.5-0.6	Residual Soil ASSA5/2	0.5
	countered		1.0						-	1.0-1.1	ASSA5/3	1.0
Ш	Not en		1.50		СН	Silty CLAY, high plasticity, orange/white, bands	with ironstone	Μ	St-Vst	1.5-1.6	Residual Soil — ASSA5/4	-
			2 <u>.0</u>						-	2.0-2.1	ASSA5/5	2 <u>.0</u> -
			2 <u>.5</u>						-	2.5-2.6	ASSA5/6	 2 <u>.5</u>
			<u>3.00</u>			Borehole BH5/ASSA5 terminated at 3.00	m			2.9-3.0	ASSA5/7	3 <u>.0</u>

3<u>.5</u>

4.0

VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

3<u>.5</u>

4.0

BOREHOLE : BH5/ASSA5

FOUNDATION EARTH SCIENCES PAGE 1 OF 1 CLIENT NAME: High Line Projects Pty Ltd JOB NUMBER: E3124-2 SITE ADDRESS: 106 Wyee Road & 1496 Hue Hue Road, Wyee NSW **PROJECT:** Acid Sulphate Soil Assesment Date Started : 13/10/2023 Completed : 13/10/2023 Logged By : RW Checked By : MS Borehole Location : Refer to Site Plan Surface RL : _---___ Datum : ____ AHD Borehole Size : 2m x 0.5m Equipment : 5 Tonne Excavator Slope : _-90° _____ Classification Symbol Consistence Гog £ Moisture Samples Material Description Additional Observations Depth Graphic Tests Method Water Remarks RL Depth (m) (m) TOPSOIL, Silty Clay, low plasticity, light brown, with sand Μ S 0.0-0.1 ASSA6/1 0<u>.5</u> 0.5 ASSA6/2 0.5-0.6 0.60 CH Silty CLAY, medium to high plasticity, orange/white М St-Vst Residual Soil 1.0 ASSA6/3 1.0-1.1 encountered Silty CLAY, high plasticity, orange/white, with ironstone bands СН St-Vst 1.30 Μ Residual Soil 1.5 ш 1.5-1.6 ASSA6/4 Not 2<u>.0</u> ASSA6/5 2.0-2.1 2<u>.5</u> ASSA6/6 2.5-2.6 ASSA6/7 2.9-3.0 3<u>.0</u> 3.0 3.00 Borehole BH6/ASSA6 terminated at 3.00m 3.5 3.5 4.0 4.0 VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense D - Dry M - Moist W - Wet VS - Very So S - Soft F - Firm St - Stiff Comments:

VSt - Very Stiff H - Hard

BOREHOLE : BH6/ASSA6

APPENDIX B: NATA ACCREDITED LABORATORY CERTIFICATES

CERTIFICATE OF ANALYSIS 335237

Client Details	
Client	Foundation Earth Sciences Pty Ltd
Attention	Michael Silk
Address	PO Box 4405, East Gosford, NSW, 2250

Sample Details	
Your Reference	E3124-2, Wyee
Number of Samples	42 Soil
Date samples received	12/10/2023
Date completed instructions received	13/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	20/10/2023					
Date of Issue	20/10/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		335237-1	335237-2	335237-3	335237-4	335237-5
Your Reference	UNITS	ASSA1-1	ASSA1-2	ASSA1-3	ASSA1-4	ASSA1-5
Depth		0.0-0.1	0.5-0.6	1.0-1.1	1.5-1.6	2.0-2.1
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH⊧ (field pH test)	pH Units	7.4	7.2	5.4	5.3	5.1
pHFox (field peroxide test)	pH Units	4.9	5.4	4.6	4.1	4.1
Reaction Rate*	-	Medium reaction	Medium reaction	Low reaction	Medium reaction	Medium reaction

sPOCAS field test						
Our Reference		335237-6	335237-7	335237-8	335237-9	335237-10
Your Reference	UNITS	ASSA1-6	ASSA1-7	ASSA2-1	ASSA2-2	ASSA2-3
Depth		2.5-2.6	2.9-3.0	0.0-0.1	0.5-0.6	1.0-1.1
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH _F (field pH test)	pH Units	5.1	5.1	6.5	6.4	5.9
pH _{FOX} (field peroxide test)	pH Units	3.9	4.0	3.6	3.9	4.4
Reaction Rate*	-	Medium reaction	Medium reaction	High reaction	Medium reaction	Medium reaction

sPOCAS field test						
Our Reference		335237-11	335237-12	335237-13	335237-14	335237-15
Your Reference	UNITS	ASSA2-4	ASSA2-5	ASSA2-6	ASSA2-7	ASSA3-1
Depth		1.5-1.6	2.0-2.1	2.5-2.6	2.9-3.0	0.0-0.1
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH⊧ (field pH test)	pH Units	5.5	5.4	5.2	5.3	7.8
pH _{FOX} (field peroxide test)	pH Units	4.1	4.2	3.6	3.3	5.4
Reaction Rate*	-	Medium reaction	Medium reaction	Medium reaction	High reaction	Medium reaction

sPOCAS field test						
Our Reference		335237-16	335237-17	335237-18	335237-19	335237-20
Your Reference	UNITS	ASSA3-2	ASSA3-3	ASSA3-4	ASSA3-5	ASSA3-6
Depth		0.5-0.6	1.0-1.1	1.5-1.6	2.0-2.1	2.5-2.6
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH⊧ (field pH test)	pH Units	6.9	6.0	5.6	5.0	5.4
pHFox (field peroxide test)	pH Units	2.8	3.5	3.6	4.0	3.5
Reaction Rate*	-	Extreme reaction	Medium reaction	Medium reaction	Medium reaction	Medium reaction

sPOCAS field test						
Our Reference		335237-21	335237-22	335237-23	335237-24	335237-25
Your Reference	UNITS	ASSA3-7	ASSA4-1	ASSA4-2	ASSA4-3	ASSA4-4
Depth		2.9-3.0	0.0-0.1	0.5-0.6	1.0-1.1	1.5-1.6
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH _F (field pH test)	pH Units	5.5	5.7	5.4	5.6	5.4
pH _{FOX} (field peroxide test)	pH Units	3.8	3.0	3.7	3.9	4.0
Reaction Rate*	-	Medium reaction	High reaction	Medium reaction	Medium reaction	Medium reaction

sPOCAS field test						
Our Reference		335237-26	335237-27	335237-28	335237-29	335237-30
Your Reference	UNITS	ASSA4-5	ASSA4-6	ASSA4-7	ASSA5-1	ASSA5-2
Depth		2.0-2.1	2.5-2.6	2.9-3.0	0.0-0.1	0.5-0.6
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH _F (field pH test)	pH Units	5.3	5.4	5.3	4.7	5.2
pH _{FOX} (field peroxide test)	pH Units	3.9	3.7	3.6	3.0	3.6
Reaction Rate*	-	Medium reaction	Medium reaction	Medium reaction	High reaction	Medium reaction

sPOCAS field test						
Our Reference		335237-31	335237-32	335237-33	335237-34	335237-35
Your Reference	UNITS	ASSA5-3	ASSA5-4	ASSA5-5	ASSA5-6	ASSA5-7
Depth		1.0-1.1	1.5-1.6	2.0-2.1	2.5-2.6	2.9-3.0
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH⊧ (field pH test)	pH Units	5.1	5.1	5.0	5.0	5.2
pHFox (field peroxide test)	pH Units	3.7	3.4	3.6	4.6	4.3
Reaction Rate*	-	Medium reaction				

sPOCAS field test						
Our Reference		335237-36	335237-37	335237-38	335237-39	335237-40
Your Reference	UNITS	ASSA6-1	ASSA6-2	ASSA6-3	ASSA6-4	ASSA6-5
Depth		0.0-0.1	0.5-0.6	1.0-1.1	1.5-1.6	2.0-2.1
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
pH _F (field pH test)	pH Units	4.8	4.4	5.2	5.2	5.3
pH _{FOX} (field peroxide test)	pH Units	2.6	3.4	3.5	3.9	3.9
Reaction Rate*	-	Extreme reaction	Medium reaction	Medium reaction	Medium reaction	Medium reaction

SPOCAS field test			
Our Reference		335237-41	335237-42
Your Reference	UNITS	ASSA6-6	ASSA6-7
Depth		2.5-2.6	2.9-3.0
Date Sampled		12.10.2023	12.10.2023
Type of sample		Soil	Soil
Date prepared	-	20/10/2023	20/10/2023
Date analysed	-	20/10/2023	20/10/2023
pH _F (field pH test)	pH Units	5.2	5.1
pH _{FOX} (field peroxide test)	pH Units	4.3	3.9
Reaction Rate*	-	Medium reaction	Medium reaction

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

QUALITY CONTROL: sPOCAS field test					Duplicate			Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/10/2023	[NT]		[NT]	[NT]	20/10/2023	[NT]
Date analysed	-			20/10/2023	[NT]		[NT]	[NT]	20/10/2023	[NT]
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	102	[NT]
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	102	[NT]

QUALITY CONTROL: sPOCAS field test					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	[NT]		[NT]	[NT]	20/10/2023	
Date analysed	-			[NT]	[NT]		[NT]	[NT]	20/10/2023	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	

QUALITY CONTROL: sPOCAS field test						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			[NT]	[NT]		[NT]	[NT]	20/10/2023	[NT]
Date analysed	-			[NT]	[NT]		[NT]	[NT]	20/10/2023	[NT]
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	[NT]
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

FOUNDATION EARTH SCIENCES Chain of Custody Record Foundation Earth Sciences PO Box 4405, East Gosford NSW 2250 Project Manager: - -Project #:E3124 - 2 🛛 🟉 Michael Silk email: ben@foundationes.com.au michael@foundationes.com.au; reece@foundationes.com.au ph: +61466 385 221 Sampled By: RW Project Name: Wyee Delivery Details: Envirolab Pty Ltd Purchase Order #: N/A Quote #: 12 Ashley Street, Chatswood NSW 2067 email: shle@envirolab.com.au Page #: 1 of 1 Turnaround: Standard ph: +612 9910 6200 Analytes Sample Comment Sample (D Depth Date Matrix ASS Field Test B Sampled phF & phFOX ASSA1-1 0.0-0.1 12.10.2023 1 X Кеер 2 ASSA1-2 0.5-0.6 12.10.2023 ¥ Кеер 3 ASSA1-3 1.0-1.1 12.10.2023 x Keep ASSA1-4 1.5-1.6 12.10.2023 4 x Keep 5 ASSA1-5 2.0-2.1 12.10.2023 Y Keep 6 2.5-2.6 ASSA1-6 12.10.2023 x Кеер 12.10.2023 7 ASSA1-7 2.9-3.0 X Keep 8 ASSA2-1 0.0-0,1 12.10.2023 ¥ Keep 9 ASSA2-2 0.5-0.6 12.10.2023 x Keep 10 ASSA2-3 1.0-1.1 12.10.2023 Y Keep 11 ASSA2-4 1.5-1.6 12.10.2023 х Кеер 12 ASSA2-5 2.0-2.1 12.10.2023 Y Keep 13 ASSA2-6 2.5-2.6 12.10.2023 х Keep 14 A5\$A2-7 2.9-3.0 12.10.2023 х Keep ASSA3-1 15 0.0-0.1 12.10.2023 х Keep 16 ASSA3-2 0.5-0.6 12.10.2023 x Keep 17 ASSA3-3 1.0-1.1 12.10.2023 X Keep 18 ASSA3-4 15-16 12.10.2023 X Keep 19 ASSA3-5 2.0-2.1 12.10.2023 х Кеер 20 ASSA3-6 2.5-2.6 12.10.2023 ¥ Кеер 21 A55A3-7 2.9-3.0 12.10.2023 X Кеер 22 A55A4-1 0.0-0.1 12.10.2023 X Кеер 23 ASSA4-2 0.5-0.6 12.10.2023 х Кеер 24 ASSA4-3 1.0-1.1 12.10.2023 X Кеер 25 ASSA4-4 1:5-1.6 12.10.2023 x Кеер 26 ASSA4-5 2.0-2.1 12.10.2023 х Кеер 27 ASSA4-6 2.5-2.6 12.10.2023 х Keep 28 ASSA4-7 2.9-3.0 12.10.2023 x Keep 29 ASSA5-1 0.0-0.1 12.10.2023 х Кеер 30 ASSA5-2 0.5-0.6 12.10.2023 x Кеер 31 ASSA5-3 1.0-1.1 12.10.2023 х Keep 32 ASSA5-4 1.5-1.6 12.10.2023 x Кеер 33 ASSA5-5 2.0-2.1 12.10.2023 x Keep 34 ASSA5-6 2.5-2.6 12.10.2023 х Кеер 35 ASSA5-7 2.9-3.0 12.10.2023 x Кеер 36 ASSA6-1 0.0-0.1 12,10,2023 х A Keep Envirolab Services 37 A55A6-2 0.5-0.6 12.10.2023 Х 38 ASSA6-3 1.0-1.1 12.10.2023 ¥ Chatswood NSW 2067 39 ASSA6-4 1.5-1.6 12.10.2023 Х Keep 40 ASSA6-S Ph: (02) 9910 6200 2.0-2.1 12,10,2023 X 41 ASSA6-6 2.5-2.6 12,10.2023 х Jab Ma: 335237. 42 ASSA6-7 2.9-3.0 12.10.2023 Х Date Received: 12/10 /23 Time Received: 1730 Special Directions and Coments: RW Relinquished by **Received By** UMILY W Received By: Co RW 1730,12/0/23 Signature Signature Temp: Cool/Ambient Date 12.10.2023 Date Cooling: Ice/lepack

Security: Intact/Broken/None

12 Ashley St

10 °C

COC 13/10/23 @ (W)

1

SAMPLE RECEIPT ADVICE

Client Details	
Client	Foundation Earth Sciences Pty Ltd
Attention	Michael Silk

Sample Login Details	
Your reference	E3124-2, Wyee
Envirolab Reference	335237
Date Sample Received	12/10/2023
Date Instructions Received	13/10/2023
Date Results Expected to be Reported	20/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	42 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	sPOCAS field test
ASSA1-1-0.0-0.1	✓
ASSA1-2-0.5-0.6	\checkmark
ASSA1-3-1.0-1.1	\checkmark
ASSA1-4-1.5-1.6	\checkmark
ASSA1-5-2.0-2.1	\checkmark
ASSA1-6-2.5-2.6	\checkmark
ASSA1-7-2.9-3.0	\checkmark
ASSA2-1-0.0-0.1	\checkmark
ASSA2-2-0.5-0.6	✓
ASSA2-3-1.0-1.1	\checkmark
ASSA2-4-1.5-1.6	\checkmark
ASSA2-5-2.0-2.1	\checkmark
ASSA2-6-2.5-2.6	\checkmark
ASSA2-7-2.9-3.0	✓
ASSA3-1-0.0-0.1	✓
ASSA3-2-0.5-0.6	\checkmark
ASSA3-3-1.0-1.1	✓
ASSA3-4-1.5-1.6	✓
ASSA3-5-2.0-2.1	\checkmark
ASSA3-6-2.5-2.6	✓
ASSA3-7-2.9-3.0	✓
ASSA4-1-0.0-0.1	✓
ASSA4-2-0.5-0.6	✓
ASSA4-3-1.0-1.1	✓
ASSA4-4-1.5-1.6	\checkmark
ASSA4-5-2.0-2.1	✓
ASSA4-6-2.5-2.6	✓
ASSA4-7-2.9-3.0	✓
ASSA5-1-0.0-0.1	✓
ASSA5-2-0.5-0.6	✓
ASSA5-3-1.0-1.1	✓
ASSA5-4-1.5-1.6	✓

Sample ID	sPOCAS field test	
ASSA5-5-2.0-2.1	\checkmark	
ASSA5-6-2.5-2.6	\checkmark	
ASSA5-7-2.9-3.0	\checkmark	
ASSA6-1-0.0-0.1	\checkmark	
ASSA6-2-0.5-0.6	\checkmark	
ASSA6-3-1.0-1.1	\checkmark	
ASSA6-4-1.5-1.6	\checkmark	
ASSA6-5-2.0-2.1	\checkmark	
ASSA6-6-2.5-2.6	✓	
ASSA6-7-2.9-3.0	\checkmark	

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 335237-A

Client Details	
Client	Foundation Earth Sciences Pty Ltd
Attention	Reece Wallace
Address	PO Box 4405, East Gosford, NSW, 2250

Sample Details	
Your Reference	E3124-2, Wyee
Number of Samples	Additional analysis 4 samples
Date samples received	12/10/2023
Date completed instructions received	23/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	30/10/2023
Date of Issue	30/10/2023
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

sPOCAS + %S w/w		_	_		
Our Reference		335237-A-14	335237-A-16	335237-A-32	335237-A-36
Your Reference	UNITS	ASSA2-7	ASSA3-2	ASSA5-4	ASSA6-1
Depth		2.9-3.0	0.5-0.6	1.5-1.6	0.0-0.1
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	30/10/2023	30/10/2023	30/10/2023	30/10/2023
Date analysed	-	30/10/2023	30/10/2023	30/10/2023	30/10/2023
pH _{kcl}	pH units	4.1	5.2	4.1	4.2
TAA pH 6.5	moles H+ /t	54	7	55	55
s-TAA pH 6.5	%w/w S	0.09	0.01	0.09	0.09
pH _{Ox}	pH units	4.0	2.8	3.9	2.5
TPA pH 6.5	moles H ⁺ /t	57	44	63	130
s-TPA pH 6.5	%w/w S	0.09	0.07	0.10	0.20
TSA pH 6.5	moles H+/t	<5	37	8	71
s-TSA pH 6.5	%w/w S	<0.01	0.06	0.01	0.11
ANCE	% CaCO ₃	[NT]	[NT]	[NT]	[NT]
a-ANC _E	moles H+/t	[NT]	[NT]	[NT]	[NT]
s-ANC _E	%w/w S	[NT]	[NT]	[NT]	[NT]
S _{KCI}	%w/w S	0.01	<0.005	0.02	0.006
SP	%w/w	0.02	0.02	0.02	0.04
Spos	%w/w	<0.005	0.02	<0.005	0.04
a-S _{POS}	moles H+/t	<5	9	<5	23
Саксі	%w/w	<0.005	0.03	<0.005	0.04
Ca⊦	%w/w	<0.005	0.04	<0.005	0.04
Сад	%w/w	<0.005	0.005	<0.005	<0.005
Мдксі	%w/w	0.015	0.006	0.016	0.007
MgP	%w/w	0.016	0.006	0.016	0.007
Mg _A	%w/w	<0.005	<0.005	<0.005	<0.005
S _{HCI}	%w/w S	0.011	[NT]	0.022	0.011
SNAS	%w/w S	<0.005	[NT]	<0.005	0.010
a-Snas	moles H+ /t	<5	[NT]	<5	<5
s-Snas	%w/w S	<0.01	[NT]	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5
a-Net Acidity	moles H+ /t	57	16	56	82
s-Net Acidity	%w/w S	0.09	0.03	0.09	0.13
Liming rate	kg CaCO₃ /t	4.3	1.2	4.2	6.2
s-Net Acidity without -ANCE	%w/w S	0.09	0.03	0.09	0.13
a-Net Acidity without ANCE	moles H+ /t	57	16	56	82
Liming rate without ANCE	kg CaCO₃ /t	4.3	1.2	4.2	6.2

SCr					
Our Reference		335237-A-14	335237-A-16	335237-A-32	335237-A-36
Your Reference	UNITS	ASSA2-7	ASSA3-2	ASSA5-4	ASSA6-1
Depth		2.9-3.0	0.5-0.6	1.5-1.6	0.0-0.1
Date Sampled		12.10.2023	12.10.2023	12.10.2023	12.10.2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	30/10/2023	30/10/2023	30/10/2023	30/10/2023
Date analysed	-	30/10/2023	30/10/2023	30/10/2023	30/10/2023
Chromium Reducible Sulfur	%w/w	<0.005	<0.005	<0.005	0.005
a-Chromium Reducible Sulfur	moles H+ /t	<3	<3	<3	3

Method ID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques.
	Ideally samples should be received in the laboratory at <6oC. Please refer to SRA for sample temperature on receipt.
	Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL result. However, it has been applied in the SNAS calculation: SNAS % = (SHCL-SKCL)x2
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity.
	Net acidity including ANC has a safety factor of 1.5 applied.
	Neutralising value (NV) of 100% is assumed for liming rate.
	The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL result. However, it has been applied in the SNAS calculation: SNAS % = (SHCL-SKCL)x2

QUALITY CONTROL: sPOCAS + %S w/w						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			30/10/2023	14	30/10/2023	30/10/2023		30/10/2023	[NT]
Date analysed	-			30/10/2023	14	30/10/2023	30/10/2023		30/10/2023	[NT]
pH _{kcl}	pH units		Inorg-064	[NT]	14	4.1	4.1	0	100	[NT]
TAA pH 6.5	moles H+/t	5	Inorg-064	<5	14	54	54	0	100	[NT]
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	14	0.09	0.09	0	[NT]	[NT]
pH _{Ox}	pH units		Inorg-064	[NT]	14	4.0	4.0	0	93	[NT]
TPA pH 6.5	moles H+/t	5	Inorg-064	<5	14	57	57	0	71	[NT]
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	14	0.09	0.09	0	[NT]	[NT]
TSA pH 6.5	moles H* /t	5	Inorg-064	<5	14	<5	<5	0	[NT]	[NT]
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	14	<0.01	<0.01	0	[NT]	[NT]
ANCE	% CaCO ₃	0.05	Inorg-064	<0.05	14		[NT]		[NT]	[NT]
a-ANC _E	moles H⁺/t	5	Inorg-064	<5	14		[NT]		[NT]	[NT]
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	14		[NT]		[NT]	[NT]
SKCI	%w/w S	0.005	Inorg-064	<0.005	14	0.01	0.01	0	[NT]	[NT]
S _P	%w/w	0.005	Inorg-064	<0.005	14	0.02	0.02	0	[NT]	[NT]
S _{POS}	%w/w	0.005	Inorg-064	<0.005	14	<0.005	<0.005	0	[NT]	[NT]
a-S _{POS}	moles H*/t	5	Inorg-064	<5	14	<5	<5	0	[NT]	[NT]
Саксі	%w/w	0.005	Inorg-064	<0.005	14	<0.005	<0.005	0	[NT]	[NT]
Ca _P	%w/w	0.005	Inorg-064	<0.005	14	<0.005	<0.005	0	[NT]	[NT]
Ca _A	%w/w	0.005	Inorg-064	<0.005	14	<0.005	<0.005	0	[NT]	[NT]
Mg _{KCl}	%w/w	0.005	Inorg-064	<0.005	14	0.015	0.015	0	[NT]	[NT]
Mg _P	%w/w	0.005	Inorg-064	<0.005	14	0.016	0.015	6	[NT]	[NT]
Mg _A	%w/w	0.005	Inorg-064	<0.005	14	<0.005	<0.005	0	[NT]	[NT]
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	14	0.011	0.011	0	[NT]	[NT]
S _{NAS}	%w/w S	0.005	Inorg-064	<0.005	14	<0.005	<0.005	0	[NT]	[NT]
a-S _{NAS}	moles H*/t	5	Inorg-064	<5	14	<5	<5	0	[NT]	[NT]
s-S _{NAS}	%w/w S	0.01	Inorg-064	<0.01	14	<0.01	<0.01	0	[NT]	[NT]
Fineness Factor	-	1.5	Inorg-064	<1.5	14	1.5	1.5	0	[NT]	[NT]
a-Net Acidity	moles H*/t	5	Inorg-064	<5	14	57	56	2	[NT]	[NT]
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	14	0.09	0.09	0	[NT]	[NT]
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	14	4.3	4.2	2	[NT]	[NT]
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	14	0.09	0.09	0	[NT]	[NT]

QUALITY CONTROL: sPOCAS + %S w/w				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-064	<5	14	57	56	2	[NT]	[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	14	4.3	4.2	2	[NT]	[NT]

QU	ALITY CON	TROL: SO	Cr			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			30/10/2023	14	30/10/2023	30/10/2023		30/10/2023	[NT]
Date analysed	-			30/10/2023	14	30/10/2023	30/10/2023		30/10/2023	[NT]
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	14	<0.005	<0.005	0	97	[NT]
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	14	<3	<3	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

		ATION CES						C	alne	fCus	tody	Record								
Client Details: Foundation Earth Sciences PO Box 4405, East Gosford NSW 2250 email: ben@foundationes.com.au michael@foundationes.com.au; reece@foundationes.com.au ph: +61466 385 221 Delivery Details: Envirolab Pty Ltd				Project Manager:			Michael Silk			Project #:E3124-2										
				Sample	1 By:			RW				Project Name: Wyee								
				Purchas	e Order i	¥:		N/A				Quote #:								
			12 Ashley Str email: ahie@ ph: +612 991	eet, Chatsw envirolab.c 0 6200	ood NSW om.au	2067			Page #:				1 of 1				Tumaround: Standard			
	1			<u> </u>		-						Ana	lytes	-			<u> </u>			
2	Sample ID	Depth	Date Sampled	Matrix			ASS Field Test phf & phFOX				:	SPOCAS				Chromium Reducible				
1	ASSA2-7	2.9-3.0						+				x		-		×				-
2	ASSA3-2	0.4-0.5	Î		-							x				×				
3	ASSA5-4	1.4-1.5	L									×				×				
4	ASSA6-1	0.0-0.1	<u> </u>					4	<u> </u>			<u>x</u>				×				_
		-							I									<u> </u>		_
			+					_		-						-	· · · · -	↓		
	<u> </u>		+					+	-	<u> </u>	<u> </u>		+					+	┢╼───━─	4
Specia	al Directions a	nd Coments	: Please refe	r to AA374	616		- 1	· ·						I			L			
Relina	uished by	_		<u> </u>		RW		Receive	d By	·	ρ	BVI,E	6J JY	6						_
Signatu	ne							Signatu	re			82						J — –		
Date			I		23	3.10.2023		Date				23/107	23	179	<u>ر</u>			1		

335237 - A

.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Foundation Earth Sciences Pty Ltd
Attention	Reece Wallace

Sample Login Details	
Your reference	E3124-2, Wyee
Envirolab Reference	335237-A
Date Sample Received	12/10/2023
Date Instructions Received	23/10/2023
Date Results Expected to be Reported	30/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Holding time exceedance
No. of Samples Provided	Additional analysis 4 samples
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoiced accordingly.

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

W/W

20	On Hold			
	✓			
	\checkmark			

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	sPOCAS +	SCr	On Ho
ASSA1-1-0.0-0.1			✓
ASSA1-2-0.5-0.6			✓
ASSA1-3-1.0-1.1			✓
ASSA1-4-1.5-1.6			✓
ASSA1-5-2.0-2.1			\checkmark
ASSA1-6-2.5-2.6			✓
ASSA1-7-2.9-3.0			✓
ASSA2-1-0.0-0.1			✓
ASSA2-2-0.5-0.6			✓
ASSA2-3-1.0-1.1			✓
ASSA2-4-1.5-1.6			✓
ASSA2-5-2.0-2.1			✓
ASSA2-6-2.5-2.6			✓
ASSA2-7-2.9-3.0	✓	✓	
ASSA3-1-0.0-0.1			✓
ASSA3-2-0.5-0.6	\checkmark	\checkmark	
ASSA3-3-1.0-1.1			\checkmark
ASSA3-4-1.5-1.6			✓
ASSA3-5-2.0-2.1			✓
ASSA3-6-2.5-2.6			\checkmark
ASSA3-7-2.9-3.0			✓
ASSA4-1-0.0-0.1			✓
ASSA4-2-0.5-0.6			\checkmark
ASSA4-3-1.0-1.1			\checkmark
ASSA4-4-1.5-1.6			✓
ASSA4-5-2.0-2.1			\checkmark
ASSA4-6-2.5-2.6			\checkmark
ASSA4-7-2.9-3.0			\checkmark
ASSA5-1-0.0-0.1			\checkmark
ASSA5-2-0.5-0.6			\checkmark
ASSA5-3-1.0-1.1			\checkmark
ASSA5-4-1.5-1.6	✓	✓	

Sample ID	sPOCAS + %S w/w	SCr	On Hold
ASSA5-5-2.0-2.1			\checkmark
ASSA5-6-2.5-2.6			\checkmark
ASSA5-7-2.9-3.0			\checkmark
ASSA6-1-0.0-0.1	✓	\checkmark	
ASSA6-2-0.5-0.6			\checkmark
ASSA6-3-1.0-1.1			\checkmark
ASSA6-4-1.5-1.6			\checkmark
ASSA6-5-2.0-2.1			\checkmark
ASSA6-6-2.5-2.6			\checkmark
ASSA6-7-2.9-3.0			\checkmark

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.